إدخال مسألة...
الرياضيات المتناهية الأمثلة
خطوة 1
خطوة 1.1
استخدِم خاصية الضرب في اللوغاريتمات، .
خطوة 1.2
اضرب في .
خطوة 1.3
اضرب في .
خطوة 2
أعِد كتابة بالصيغة الأُسية باستخدام تعريف اللوغاريتم. إذا كان و عددين حقيقيين موجبين وكان ، إذن تكافئ .
خطوة 3
خطوة 3.1
أعِد كتابة المعادلة في صورة .
خطوة 3.2
اقسِم كل حد في على وبسّط.
خطوة 3.2.1
اقسِم كل حد في على .
خطوة 3.2.2
بسّط الطرف الأيسر.
خطوة 3.2.2.1
ألغِ العامل المشترك لـ .
خطوة 3.2.2.1.1
ألغِ العامل المشترك.
خطوة 3.2.2.1.2
اقسِم على .
خطوة 3.2.3
بسّط الطرف الأيمن.
خطوة 3.2.3.1
ارفع إلى القوة .
خطوة 3.2.3.2
احذِف العامل المشترك لـ و.
خطوة 3.2.3.2.1
أخرِج العامل من .
خطوة 3.2.3.2.2
ألغِ العوامل المشتركة.
خطوة 3.2.3.2.2.1
أخرِج العامل من .
خطوة 3.2.3.2.2.2
ألغِ العامل المشترك.
خطوة 3.2.3.2.2.3
أعِد كتابة العبارة.
خطوة 3.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
خطوة 3.4
بسّط .
خطوة 3.4.1
أعِد كتابة بالصيغة .
خطوة 3.4.2
اضرب في .
خطوة 3.4.3
جمّع وبسّط القاسم.
خطوة 3.4.3.1
اضرب في .
خطوة 3.4.3.2
ارفع إلى القوة .
خطوة 3.4.3.3
ارفع إلى القوة .
خطوة 3.4.3.4
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 3.4.3.5
أضف و.
خطوة 3.4.3.6
أعِد كتابة بالصيغة .
خطوة 3.4.3.6.1
استخدِم لكتابة في صورة .
خطوة 3.4.3.6.2
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 3.4.3.6.3
اجمع و.
خطوة 3.4.3.6.4
ألغِ العامل المشترك لـ .
خطوة 3.4.3.6.4.1
ألغِ العامل المشترك.
خطوة 3.4.3.6.4.2
أعِد كتابة العبارة.
خطوة 3.4.3.6.5
احسِب قيمة الأُس.
خطوة 3.4.4
بسّط بَسْط الكسر.
خطوة 3.4.4.1
اجمع باستخدام قاعدة ضرب الجذور.
خطوة 3.4.4.2
اضرب في .
خطوة 3.5
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 3.5.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 3.5.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 3.5.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 4
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية: